
Network Layer
Ping Pong test program

Aug 2, 1989

The Network Layer software supports task-to-task communication across the
network. A set of four Pascal-callable interface routines are provided that
invoke the Network Layer routines to provide network service to application
programs in the VME Local Stations. The PingPong application program is a
demonstration of the use of these routines.

Upon program initialization PingPong connects to the network using the two
names PING and PONG. The PING “task” accepts operator input to send a
request to PONG. The PONG “task” will respond to any requests that are sent to
it. The same application is simultaneously a PING task and a PONG task. It can
be loaded on two different nodes for the purpose. This allows exercising
sending requests and receiving replies between two nodes. One can be PING
and the other will be PONG. Or, they can be both simultaneously.

In order to provide for some example “work” to be done by the replying task,
the request is interpreted as a request for memory data that should be
returned in response to the request. Both the number of bytes and the starting
memory address are specified in the last three words of the request message.
With the 9-word Acnet header, the size of the request message is therefore 24
bytes. The size of the response message to such a request is 20 plus the
number of bytes requested, since the first word of the response (following the
Acnet header) is a status word with the value 'OK' or 'BE' as an indication of
whether a bus error was encountered when accessing the requested memory.
The format of the display showing the PING activity is as follows:

J NET PING PONG 08/01/89 1057
PING OPEN 0 *CLOSE
 *WRITE 0 0 N<9000>
 0002 0000 7304 0804 504F4E47
 0000 1234 0018 0104 00102008
 READ 0 T= 14 N=9000
 0004 0000 7304 0804 504F4E47
 0003 1234 0118 "OK" 8908 0109
PONG OPEN 0 *CLOSE
 READ N= 0

 WRITE N= 0

The upper part of the display shows the PING message traffic. Note the fields
of the Acnet header. The 0002 signifies a request, the destination node is $73,
the destination task name is 'PONG', the message id is $1234, and the message
size is 24 bytes. The source node and the source task id for a request message
are filled in by the Network Layer software. The three additional words of the

Network Layer Aug 2, 1989 page 2
bytes of memory data beginning at address $102008. This request was executed
9000 times.

The next section of the display shows the response that was received from the
PONG task in node $73. The Acnet header is mostly identical in the response
message, indicated by the first word value of 0004. The replier had to specify
the message size and a status word, but the other fields are left the same as
were received in the request. Note that the source task id (actually the
destination task id for a reply) has the value $03. That value was also part of
the received request and serves to route the reply back to the requesting task,
PING in this case. The time for the response is shown as 14 counts in units of
0.5 msec; hence, it means 7 msec. This time is measured from just before
PING’s call to NetWrite until just after PING’s call to NetRead in response to
the application’s invocation due to the Network event that results from the
arrival of the response message. There were 9000 responses received.

A example of the display from the perspective of PONG is as follows:

J NET PING PONG 08/01/89 1125
PING OPEN 0 *CLOSE
 *WRITE N<9000>
 0002 0000 7304 0804 504F4E47
 0000 1234 0018 0104 00102008
 READ T= N= 0

PONG OPEN 0 *CLOSE
 READ 0 N= 535
 0002 0000 0804 7304 504F4E47
 0005 5678 0018 0004 0010200C
 WRITE 0 N= 535
 0004 0000 0804 7304 504F4E47
 0005 5678 0018 "OK" 25310024

The lower part of the display shows the PONG activity. (The upper part merely
shows the example request message last used that is saved across invocations
of the page.) Note the fields of the Acnet header sent by PING from node $73
this time. The value $5678 was used for the message id in this case and the
source task id $05 was filled in by node 73’s Network Layer software. Four
bytes of data were requested from location $10200C in node 08. The reply
message sent by PONG is also shown, The status word preceding the four
returned memory data bytes is displayed here in Ascii and indicates that there
was no bus error accessing memory. A total of 535 requests were replied to.

The two lines of the display which show the NetOpen status return allow
invoking NetClose to test the status return from that call. One normally

Network Layer Aug 2, 1989 page 3
Overview of Network processing

It may be helpful to understand some of what is going on behind the
scenes while PingPong is “doing its thing.” PING sends a request message by
making a call to NetWrite, specifying the message that it wants to send,
including the Acnet header in the first 9 words. It also provides a variable
which will be set later to indicate the success of the transmission to the
network. NetWrite actually allocates a dynamic memory “message block” to
house the some control information used by the network. A pointer to the
message is put into the message block, and a pointer to the block is passed to
NetQueue, which in turn invokes OUTPQX to place the pointer onto the
Output Pointer Queue OUTPQ. NetWrite then calls NetSend (which calls
NetXmit) to build the network frame in a circular frame buffer and pass it to
the token ring chipset. At this point NetWrite returns to the user application.

Meanwhile, the chipset uses DMA to transfer the frame buffer into its own
high speed memory which is able to keep up with the 4 Mbps token ring
bandwidth. When it obtains the token from the ring, it transmits the frame.
When the frame has circulated around the ring, the transmitting chipset
strips it from the ring and emits a new token. At this point the success of the
transmission is known, and the chipset generates a transmit interrupt. The
network transmit interrupt routine (in module NetInt) records a status code
in the user’s variable that was passed earlier via the call to NetWrite. The
way PING is written, no particular notice of this value is made except at the
usual 15 Hz invocations of the application, when the screen is updated with
the current value of the variable if it has changed.

On the PONG side of the equation, the arrival of the network message to the
chipset results in a DMA transfer into a circular frame receive buffer and an
interrupt being delivered to the system. The receive interrupt routine uses
the destination SAP to obtain a message queue id from the NETCT table of
connected SAPs. In this case, it sends a frame reference message containing a
pointer to the frame contents to the ANet message queue. Writing a message
into this queue wakes up the ANet Task.

The ANet task analyzes the Acnet header and looks up the destination task
name in the NETCT Table. It sends a message reference to the associated
message queue (whose name is PONG in this case). Another field in the NETCT
entry indicates that it should also send event #4 to the application task to
signal it that a network event has occurred. (This was arranged automatically
by PONG’s NetOpen call.) When the application task is invoked with the
Network event, it calls NetRead (as both PING and PONG, since the Network
event may signal the arrival of either a request or a response or both). In this
case, a message is received by PONG’s call to NetRead, and the request,

Network Layer Aug 2, 1989 page 4
requested memory data into a reply buffer. The Acnet header is copied to the
start of that same buffer, the first word is set to denote a reply message, and
the last word of the header is set to indicate the total message size. NetWrite
is called to deliver the response. As before, NetWrite allocates a message
block and puts a pointer to the user’s message into it. Then NetQueue and
NetSend are called in turn to “get it out the door.” NetSend builds the
network frame in the circular frame transmit buffer and hands it off to the
chipset. The chipset DMA’s the frame into its own fast memory and transmits
the frame to the token ring.

Back on the PING side, the response frame is received, and the receive
interrupt passes a reference to it to the ANet task, which in turn passes a
reference to the message to the application and signals the application task via
event #4. The application is invoked and finds a message for PING. The call to
NetRead results in the response message being copied from the frame buffer
into the user’s buffer. The cycle is complete. If the count is not yet exhausted,
then NetWrite is called to send the request message again to PONG.

The Network Layer implementation, as is seen from the above discussion,
does copy messages in memory. The received data is copied from the circular
receive frame buffer into the user’s buffer. The transmitted data is copied
from the user’s buffer into the circular transmit frame buffer.

Network Layer Aug 2, 1989 page 5
Statistics have been collected on the performance of the Ping Pong test
vehicle. They are listed in the following table:

Cache off

RequesterRequesterRequesterReplier

#bytesTx to Rx Rx to Tx Appl Prog Tx delay Rep rate Frames/sec

KBytes/sec

44.5 2.0 4.31.3 6.5 154 1

256 5.02.1 4.32.0 7.2 139 36

512 5.52.1 4.43.5 7.7 130 66

1024 8.42.2 4.65.0 10.6 94 97

2048 14.02.5 5.0 9.016.6 60 123

3072 19.52.8 5.2 13.022.5 44 137

4096 25.53.0 5.4 16.528.5 35 144

Cache on

RequesterRequesterRequesterReplier

#bytesTx to Rx Rx to Tx Appl Prog Tx delay Rep rate Frames/sec

KBytes/sec

42.7 2.0 3.21.3 4.8 208 1

256 3.62.0 3.22.0 5.7 175 45

512 5.02.0 3.23.5 7.0 143 73

1024 7.42.2 3.35.0 9.6 104 107

2048 12.02.5 3.6 9.014.5 69 141

3072 17.03.7 3.7 13.019.5 51 158

4096 21.53.0 4.0 16.524.5 41 167

The reference to “Cache on” refers to the 68020 instruction cache in both
nodes. The “Tx to Rx” refers to the time from the Tx interrupt of the request
message to the Rx interrupt of the response message. The “Rx to Tx” refers to
the time from the Rx interrupt of a response to the Tx interrupt of the next
request. The application program timing is the timing of the PING
application. The “Replier Tx Delay” is the time from the replier’s NetXmit
routine handing the frame off to the chipset to the time of the Tx interrupt
generated by the chipset when the response message has been completely
transmitted around the ring. The “Rep Rate” is the time from one request to
the next and should equal the sum of “Tx to Rx” and “Rx to Tx” times. It also
corresponds to the measured time to make the request and receive the reply
from the application’s viewpoint. The last two columns are derived from the
measured data. The “Frames/sec” only counts the response frames, not the
request frames. The “KBytes/sec” only counts the requested memory data
bytes, not the total bytes in the frame.

